The generator matrix 1 0 0 1 1 1 1 1 1 1 (a+1)X 1 0 1 1 1 1 1 1 1 0 (a+1)X aX 1 1 1 1 1 0 1 1 1 1 0 1 0 1 a a+1 (a+1)X (a+1)X a+1 (a+1)X+a 1 (a+1)X+a+1 1 1 (a+1)X+1 (a+1)X+1 a (a+1)X+a (a+1)X+1 (a+1)X 1 1 aX a+1 aX+a a+1 aX+a+1 aX+a 1 X+a aX+a+1 aX+1 0 0 0 1 a+1 a 1 a+1 1 X+a+1 1 1 a a X+1 0 a 0 a+1 (a+1)X+a+1 X+1 aX+a+1 aX+1 1 (a+1)X+a+1 (a+1)X+1 a+1 (a+1)X aX+1 aX+a (a+1)X+a+1 (a+1)X+a aX+1 0 0 0 0 X 0 X 0 0 (a+1)X aX X X aX (a+1)X 0 0 (a+1)X aX X (a+1)X X aX X (a+1)X 0 0 aX X (a+1)X 0 (a+1)X X aX 0 0 0 0 X (a+1)X aX (a+1)X (a+1)X X X aX X X X aX 0 aX (a+1)X (a+1)X 0 aX 0 0 0 0 X X aX (a+1)X X (a+1)X 0 generates a code of length 33 over F4[X,sigma]/(X^2) who´s minimum homogenous weight is 84. Homogenous weight enumerator: w(x)=1x^0+129x^84+132x^85+48x^86+672x^87+1158x^88+792x^89+168x^90+1968x^91+3042x^92+1944x^93+528x^94+4080x^95+5616x^96+4464x^97+960x^98+6864x^99+8178x^100+4788x^101+960x^102+5808x^103+5916x^104+2904x^105+408x^106+2112x^107+1407x^108+336x^109+69x^112+51x^116+24x^120+9x^124 The gray image is a linear code over GF(4) with n=132, k=8 and d=84. This code was found by Heurico 1.16 in 8.53 seconds.